
Transport Mechanisms for Metadata-driven
Distributed Multimedia Adaptation1

Michael Ransburg, Christian Timmerer, and Hermann Hellwagner
Department of Information Technology (ITEC)

Klagenfurt University, Klagenfurt, Austria
{michael.ransburg, christian.timmerer, hermann.hellwagner}@itec.uni-klu.ac.at

Abstract—The information revolution of the last decade has
resulted in a phenomenal increase in the quantity of multimedia
content available to an increasing number of different users with
different preferences who access it through a plethora of devices
and over heterogeneous networks. In order to address the
amount of different content types, MPEG-21 Digital Item
Adaptation (DIA) introduces interoperable description tools
which enable coding format independent adaptation. Bandwidth-
efficient transport of the content to terminals with different
capabilities and through a variety of access networks with
various characteristics requires adaptation facilities not only on
the server but also within the network. In this paper we present
transport mechanisms for MPEG-21-based metadata enabling
generic adaptation within the network. Three different transport
mechanisms for delivering this metadata in conjunction with the
corresponding multimedia content are evaluated and a payload
format for the transport of this metadata is presented.
Furthermore, we performed measurements which demonstrate
the bandwidth benefits of our distributed adaptation approach
compared to server-centric adaptation in a multicast scenario.
Finally, we applied various encoding formats for the metadata
which further reduces the metadata overhead.

Keywords—MPEG-21 Digital Item Adaptation; distributed
multimedia adaptation; metadata transport

I. INTRODUCTION
In today’s multimedia content delivery architecture,

adaptation becomes more and more important. Content
providers aspire towards serving a plethora of heterogeneous
end devices and networks without neglecting economical
principles, i.e., if multiple versions of the same content are
maintained. Therefore, a single high quality multimedia
resource is stored on the server and adapted according to the
usage environment on demand. The MPEG-21 Digital Item
Adaptation (DIA) standard [1][2] specifies normative
description tools enabling the construction of device and
coding-format independent adaptation engines in an
interoperable way [3]. However, it has been argued that it is
not realistic that a single adaptation node (or module) could
cope with all kinds of usage environments [4]. As a
consequence, different adaptation nodes distributed over the
whole network could be employed, specifically for serving
different access networks. Interoperability among these nodes
can be guaranteed through standardized media and metadata
formats. This requires that the metadata associated with the

multimedia content needs to be transported to such adaptation
nodes in order to steer the actual adaptation process there.

In [5], an architecture for dynamic and distributed
multimedia content adaptation in streaming environments is
proposed which introduces some of the key concepts described
in this paper. This paper, however, concentrates on the details
of transporting media and metadata between adaptation nodes
within a heterogeneous network. Thus, this paper aims to
provide answers for the unsolved issues in [5] focusing on
metadata transport questions.

The remainder of this paper is organized as follows.
Section II provides a qualitative evaluation of the possibilities
how to transport the different types of metadata in conjunction
with the actual multimedia content. In Section III, we propose a
transport format for content-related metadata. Preliminary
measurements and results can be found in Section IV and
Section V concludes the paper.

II. EVALUATION OF MEDIA AND METADATA TRANSPORT
MECHANISMS

A. Introduction
As described in [3] three different types of information are

required by an adaptation node located within a network: (1)
the description of the usage environment, e.g., in terms of
terminal and network capabilities (among others), (2) the actual
multimedia content, and (3) its associated metadata. DIA
specifies two types of content-related metadata used within the
adaptation engine as described in [3] and [5]. First, the generic
Bitstream Syntax Description (gBSD) provides means for
describing the syntax of a bitstream independent from its
coding format. Second, the AdaptationQoS (AQoS) description
specifies the relationship between usage environment, possible
adaptation operations and resulting qualities of the content.
Both types of metadata are used to adapt the multimedia
content independent of its actual coding format.

The usage environment description is usually attached to
the request for the content. In the sequel, however, we will
concentrate on content-related metadata (gBSD and
AdaptationQoS). In many use cases, streaming of media
resources such as audio/video content is required, which is
facilitated by the Real-time Transport Protocol (RTP). Due to
its size it is unfeasible to transport the content-related metadata
in one big chunk. Thus, it should be transported using RTP as

1 Part of this work was supported by the European Commission in the context
of the DANAE project (IST-1-507113); http://danae.rd.francetelecom.com

0-7803-9319-8/05/$20.00 (c)2005 IEEE. 25

well, e.g., to exploit the synchronization mechanisms offered
by RTP. However, there are still three possibilities how to
transport these different metadata assets with the actual media
content which are evaluated in the following:

― One combined stream containing media and metadata.

― One metadata stream and one media data stream.

― Multiple metadata streams (one for each type of
metadata) and one media data stream.

B. Multiplexing in the Media Resources’ Stream
Some RTP payload formats, such as the RTP payload

format for transport of MPEG-4 Elementary Streams (RFC
3640) provide means for including arbitrary data, e.g.,
metadata, within the auxiliary header.

The advantages of this approach are that it is straight
forward to implement (all the requisites are already specified)
and that there is little processing and bandwidth overhead
because there is only one stream to handle. Moreover there is
no synchronization necessary between different streams, which
reduces complexity.

However, this approach also has several disadvantages.
The first one is based on the assumption that metadata is more
valuable than the media data. Metadata, specifically the
AdaptationQoS, usually describes many media access units
(AUs) in a single metadata access unit (MAU) and therefore a
large segment of the stream would be affected if such a MAU
were lost. This issue raises the need for reliable transport
mechanisms for MAUs. While re-transmission can be used to
fulfill this requirement, it results in the need for large buffers,
which increases the startup delay. A better solution would be to
reserve enough bandwidth for the metadata stream in advance,
which is not possible with the approach of a combined stream.
Another – maybe the biggest – disadvantage is that the
combined stream approach depends on a specific payload
format (e.g., RFC 3640) which provides the auxiliary header
section where the metadata can be transported. Other payload
formats might not provide such an auxiliary section. That is, by
following the combined stream approach one would create a
solution which is limited to a specific type of resource. This
conflicts with the need for interoperability. Moreover, while
one saves processing overhead by having only one stream,
there is some additional overhead due to the necessary
(de)multiplexing of the media data and the metadata.

C. One Separate Medadata Stream
In this scenario, the different types of metadata are

multiplexed into one metadata stream.

The advantages of this approach are that it allows the
metadata stream to be treated differently from the media
stream. This makes it possible to reserve bandwidth for the
metadata stream in order to protect it from packet loss.
Additionally, the transport of metadata is no longer bound to a
specific media payload format.

The disadvantages of this approach are the additional
processing overhead caused by the (de)multiplexing of the

Table 1: Advantages and disadvantages of different metadata
transport mechanisms.

 One
Combined

Stream

One
Metadata

Stream

Multiple
Metadata
Streams

(De-)Multiplexing Efforts High Medium Low
(De-)Packetizing Efforts Low Medium High

Number of Streams 1 2 3+
Transport Overhead Low Medium High
Processing Overhead High Medium Low

Synchronization Efforts Low Medium High
Interoperability Issues Yes No No
Protection Flexibility Low Medium High

Asynchronous Transport No Yes (limited) Yes
Scalability Yes (limited) Yes (limited) Yes

metadata, the additional bandwidth overhead due to the second
RTP stream and the necessary synchronization between the
two streams, which increases the complexity of the
implementation.

D. Multiple Metadata Streams
In this scenario, separate streams for each type of metadata

are used, for example, one for the gBSD and one for the
AdaptationQoS.

In addition to the advantages listed for the approach in
Section C this mechanism offers the possibility of handling
each kind of metadata by specialized adaptation nodes, e.g., an
adaptation node with special hardware for XML processing2,
thus facilitating scalability. This is also possible for the other
approaches, by de-multiplexing the stream(s) and then sending
each type of metadata to the specialized adaptation nodes for
processing. It would, however, introduce additional delay into
the streaming chain. Another advantage lies in the possibility to
send the AdaptationQoS and the gBSD slightly in advance
(asynchronous transport) in order to be processed by the
adaptation node before the media data arrives and is adapted.
This results in lower startup delay as the adaptation node can
more efficiently use its resources. The final advantage is that
no metadata (de-)multiplexing is needed.

This last advantage of course comes at the price of the
disadvantage of high bandwidth and packetizing overhead due
to having multiple media and metadata streams. Moreover,
synchronization of these three streams is needed and leads to
additional complexity.

Table 1 summarizes the advantages and disadvantages of
each of these possibilities. As a conclusion we will concentrate
on the third option in the remainder of this paper.

III. TRANSPORT FORMATS AND STRATEGIES
In this section, we will first concentrate on the transport

format and subsequently provide an example for it.

A. Transport Formats
In the following, we focus on investigating an RTP payload

format for content-related metadata. First, the payload format is
investigated and then the header fields which are used to signal
information about the payload are discussed.

2 XA35 XML Accelerator; http://www.datapower.com/products/xa35.html.

26

Figure 1: Streaming XML using BiM enables partial updates of

the XML document (cf. highlighted nodes).

Figure 2: RTP packet with MAU payload.

1) Payload Format
The approach illustrated in [5] requires the fragmentation of
the content-related metadata into independent XML fragments,
called Process Units (PUs) for the gBSD and Adaptation Units
(ADUs) for the AdaptationQoS. We will refer to both types as
MAUs.

We have identified three options for the payload format of
such MAUs. One can either transport them (1) in plain text, (2)
compressed using a generic or an XML-aware compression
algorithm, or (3) compressed with the MPEG-7 Binary Format
for Metadata (BiM) [8] which allows streaming of XML-based
data as depicted in Figure 1. While complete MAUs would be
transmitted in the first two cases, BiM would signal a complete
MAU only once and subsequently just the nodes which
changed (see highlighted nodes and dotted lines in Figure 1),
together with information on how and where to include them
into the previously sent complete MAU. Please refer to Section
B for an example of this approach. The transport encoding of
the MAU is signaled using a payload specific header field.
Independent from the encoding, each RTP packet may contain
a fragment of an MAU, a complete MAU or many MAUs. In
case of many MAUs, the MAU header indicates the length of
each MAU as described in the next section.

2) Header Fields
Generally, the RTP header fields are used as defined in [10]

and shown in Figure 2. The Time Stamp should be based on the

<dia:DIA>
 <dia:DescriptionMetadata>
 <dia:ClassificationSchemeAlias alias="MV4"
 href="urn:mpeg:mpeg4:video
 :cs:syntacticalLabels"/>
 </dia:DescriptionMetadata>
 <dia:Description xsi:type="gBSDType"
 bs1:bitstreamURI="akiyo.mpg4">
 <gBSDUnit syntacticalLabel=":MV4:VO" start="0"
 length="18"/>
 <gBSDUnit syntacticalLabel=":MV4:I_VOP"
 start="18" length="4641" marker="Temporal-0"/>
 <gBSDUnit syntacticalLabel=":MV4:P_VOP"
 start="4659" length="98" marker="Temporal-1"/>
 <gBSDUnit syntacticalLabel=":MV4:B_VOP"
 start="4757" length="16" marker="Temporal-2"/>
 <!-- ... and so on ... -->
 </dia:Description>
</dia:DIA>

Document 1: VES gBSD fragment.

same clock as the one which is used for the media content.
Each MAU which describes a specific media segment carries
the same Time Stamp as the first AU of that segment. If several
MAUs describe a single AU, all MAUs carry the same Time
Stamp as the AU.

For the MAU header we propose the following fields. The
MAU Header Size indicates the size of the header. The MAU
Size indicates the size of the associated MAU. The Encoding
Type defines the encoding of the MAU. The MAU Index
indicates the serial number of the associated MAU. The CTS
Flag indicates if the composition time stamp of the MAU is
available. If so, then the CTS Delta field contains the difference
of the composition time stamp and the RTP time stamp. This
can be used to transmit MAU packets in a different order than
in which they are processed, e.g., in order to enable traffic
smoothing. The RAP Flag indicates if the current packet is a
random access point, i.e., if it contains a complete MAU. In
case of BiM, this is the case whenever a complete MAU is
transmitted. The RAPs of the MAU stream should be aligned
with the RAPs of the media stream in order to provide common
entry points for clients which wish to join the session.

B. Examples
A fragment of a gBSD describing an MPEG-4 Visual

Elementary Stream (VES) [6] which comprises the video
object header and the first three video object planes (VOPs), is
shown in Document 1. It also includes a marker attribute for
each VOP which indicates its suitability for temporal scaling.
While dropping B-VOPs is generally a good idea, dropping I-
or P-VOPs is more problematic since other VOPs depend on
them.

Document 2 shows a single PU. Due to the requirement that
a PU needs to be able to be processed independently from all
other PUs, the PU includes all its ancestor nodes. It can also be
seen that the start attribute is set to zero. The reason for this is
that each PU describes a segment of the content which is
adapted independently from the other resource segments. The
adaptation engine has no knowledge of how many bytes of the
resource have been adapted so far and therefore each resource
segment (and its corresponding PU) is treated in the same way
as a new resource.

27

<dia:DIA>
 <dia:DescriptionMetadata>
 <dia:ClassificationSchemeAlias alias="MV4"
 href="urn:mpeg:mpeg4:video
 :cs:syntacticalLabels"/>
 </dia:DescriptionMetadata>
 <dia:Description xsi:type="gBSDType"
 bs1:bitstreamURI="akiyo.mpg4">
 <gBSDUnit syntacticalLabel=":MV4:I_VOP" start="0"
 length="4641" marker="Temporal-0"/>
 </dia:Description>
</dia:DIA>

Document 2: VES gBSD Process Unit (MAU).

<FragmentUpdateUnit>
 <FUCommand>replaceNode</FUCommand>
 <FUContext>/dia:DIA/dia:Description/gBSDUnit
 </FUContext>
 <FUPayload>
 <gBSDUnit syntacticalLabel=":MV4:I_VOP" start="0"
 length="4641" marker="Temporal-0"/>
 </FUPayload>
</FragmentUpdateUnit>

Document 3: VES gBSD transport format (using BiM, textual
representation).

As mentioned above, there are two options for the transport
of the MAUs. One option is to transmit the complete MAU
every time (cf. Document 2). The second option is the BiM
approach which allows partial updates of the document, i.e.,
only the changes are transmitted to the adaptation node. BiM
signals these changes using one or more so-called Fragment
Update Units (FUUs) for each MAU. Document 3 shows a
textual representation of such an FUU of the equivalent binary
version for better readability. The Fragment Update Command
(FUCommand) signals how the Fragment Update Payload
(FUPayload) should be applied to the node referenced by the
Fragment Update Context (FUContext). This allows for a very
efficient signaling of MAUs, which we will evaluate in the
following.

IV. MEASUREMENTS AND RESULTS
Compared to traditional server-centric adaptation, our

proposal can offer three advantages. First, the adaptation is
generic due to the usage of the content-related metadata. This
allows the actual adaptation engine to be kept simple and
efficient. Second, our approach also allows to quickly react to
local bandwidth fluctuations, which may otherwise result in
uncontrolled packet loss. Third, it reduces the bandwidth
requirements in certain cases. In this section, we will take a
look at this third characteristic.

We assume a multicast scenario, where a number of clients
consume the same content, either through the adaptation node
or directly from the server as described in [5]. Up to four
clients are considered which all consume the same content but
with different quality and bandwidth requirements. They may
use different access networks, for instance. It is assumed that
the first client wants optimum quality, the second client wants
a quality corresponding to a bandwidth reduction of 25%, the
third client wants a quality corresponding to a bandwidth
reduction of 50%, and the fourth client wants a quality
corresponding to a bandwidth reduction of 75%.

Table 2: MPEG-4 Visual Elementary Stream (VES) [6], MPEG-4
Bit Sliced Arithmetic Coding (BSAC) [7], and Embedded Zero
Block Coding (EZBC) [9] sample media streams.

 Scalability Mode(s) FPS Characteristic
MPEG-4 VES Temporal (Frame Dropping) 20 352x288 Pixel
MPEG-4 BSAC Quality (48 Levels) 25 44kbps
EZBC Quality, Spatial, Temporal 20 176x144 Pixel

Table 3: Sample media stream and metadata bandwidth
requirements [kbps].

Content CRM plain

text
CRM

XMLPPM
CRM BiM

MPEG-4 VES 86,98 63,13 37,5 6,56
MPEG-4 BSAC 66,78 248,00 112,88 46,88
EZBC 1313,68 694,40 58,24 55,68

Table 4: Bandwidth requirements for traditional server-centric
adaptation [kbps].

 1 Client 2 Clients 3 Clients 4 Clients
VES Server-Centric 86,98 152,22 195,71 217,46
BSAC Server-Centric 66,78 116,87 150,26 166,96
EZBC Server-Centric 1313,68 2298,94 2955,78 3284,2

Table 5: Bandwidth requirements for distributed adaptation
[kbps].

 Plain Text XMLPPM BiM
VES including CRM 150,11 124,48 93,54
BSAC including CRM 314,78 179,66 113,66
EZBC including CRM 2008,08 1371,92 1369,36

Three types of content are used for our measurements which
are listed in Table 2. Table 3 shows the bandwidth
requirements (in kbps) of the sample data, including the
content-related metadata (CRM) in plain text, with XML-
aware XMLPPM3 compression, and using the BiM approach
(with zLib optimized codec for strings and binary context path
encoding enabled).

In our measurements we will compare the bandwidth
consumed in the server-centric approach (one stream for each
client) and in the distributed approach. While there is one
stream for each client in the server-centric approach, the
distributed approach only requires one content stream and one
content-related metadata stream between the server and the
adaptation node. The adaptation node can then adapt the media
in a generic way for any content quality which is asked for by
the clients. The objective is to show for which amount of
clients our proposal reduces the bandwidth requirements
between the server and the adaptation node compared to
server-centric adaptation. We will neglect the overhead of the
transport mechanism (i.e., we are only looking at the payloads)
and we will focus on the gBSD for the measurements.

Table 4 and Table 5 show a comparison of the bandwidth
requirements (in kbps) for the server-centric scenario and the
distributed scenario. Table 4 shows the server-centric scenario
with one stream for each client and Table 5 shows the
distributed scenario with one media and one metadata stream
which is coded/compressed using the three different
approaches which were introduced above.

The measurements on our test system show that with a
single client, our approach always requires more bandwidth

3 XMLPPM 0.96; http://sourceforge.net/projects/xmlppm.

28

70
90

110
130
150
170
190
210
230

1 Client 2 Clients 3 Clients 4 Clients

kb
ps

VES Server-Centric

VES Distributed Plain Text

VES Distributed XMLPPM
VES Distributed BiM

Figure 3: VES bandwidth requirements.

50

100

150

200

250

300

350

1 Client 2 Clients 3 Clients 4 Clients

kb
ps

BSAC Server-Centric
BSAC Distributed Plain Text

BSAC Distributed XMLPPM
BSAC Distributed BiM

Figure 4: BSAC bandwidth requirements.

than server-centric adaptation due to the metadata overhead.
For two or more clients, our proposal is more bandwidth
efficient depending on the complexity of the content-related
metadata which depends on the offered scalability modes.

VES offers only temporal adaptation for which our
approach is more efficient than server-centric adaptation given
two or more clients (cf. Figure 3). EZBC offers more diverse
adaptation possibilities but due to the high bandwidth
requirements of EZBC streams, our approach is more
bandwidth efficient for two or more clients (cf. Figure 5).
BSAC offers fine grained quality which means that the
content-related metadata needs considerable bandwidth.
Moreover audio streams need considerable less bandwidth than
video streams. Here our approach is more efficient than server-
centric adaptation when there are three or more clients with
content-related metadata compressed using the BiM approach
(cf. Figure 4).

Generally one can say that, in terms of size, the content-
related metadata does not scale as well as media content. This
results in considerable metadata overhead for media content
that offers a wide range of scalability modes with low
bandwidth requirements. For a BSAC stream with only 22
kbps, the content-related metadata would for example still be
the same size as for the stream in our experimental setup.

One can also see from the measurements that the BiM
codec performs best for compression of the content-related
metadata. It also has the advantage of allowing to process the
PUs in binary format, a possibility that could result in
considerably less processing effort on the adaptation node.

Our approach offers benefits which are not available with
traditional server-centric adaptation. Additionally it offers an
increased bandwidth efficiency if several clients consume the
same content.

1000

1500

2000

2500

3000

3500

1 Client 2 Clients 3 Clients 4 Clients

kb
ps

EZBC Server-Centric
EZBC Distributed Plain Text
EZBC Distributed XMLPPM
EZBC Distributed BiM

Figure 5: EZBC bandwidth requirements.

V. CONCLUSION
In this paper we presented a transport mechanism for content-
related metadata enabling generic distributed content
adaptation within the multimedia delivery chain. We have
evaluated several approaches for metadata transport in
conjunction with the actual media data it describes. Finally, we
provided first results demonstrating the benefits of our
approach.

Future work will result in a complete implementation of our
distributed adaptation approach in the context of the DANAE
project. It will also be investigated how our approach can be
beneficial in unicast scenarios, e.g., with the support of caching
mechanisms. Further research will also evaluate our approach
in load balancing scenarios where different types of adaptations
are conducted on distributed, specialized adaptation nodes.

REFERENCES
[1] ISO/IEC 21000-7:2004, Information Technology — Multimedia

Framework (MPEG-21) — Part 7: Digital Item Adaptation, 2004.
[2] A. Vetro and C. Timmerer, “Digital Item Adaptation: Overview of

Standardization and Research Activities”, IEEE Trans. on Multimedia,
vol. 7, no. 3, June 2005.

[3] C. Timmerer and H. Hellwagner, “Interoperable Adaptive Multimedia
Communication”, IEEE Multimedia Magazine, vol. 12, no. 1, Jan.-Mar.
2005, pp. 74-79.

[4] K. Leopold, D. Jannach, H. Hellwagner, “A Knowledge and Component
Based Multimedia Adaptation Framework”, Proc. of the IEEE 6th Int’l.
Symposium on Multimedia Software Engineering (MSE), Florida, USA,
Dec. 2004, pp. 10-17.

[5] A. Hutter, P. Amon, G. Panis, E. Delfosse, M. Ransburg, and H.
Hellwagner, “Automatic Adaptation of Streaming Multimedia Content
in a Dynamic and Distributed Environment”, accepted for Special
Session on Adaptive Wireless Video Streaming at IEEE Int’l. Conf. on
Image Processing 2005, Genova, Italy, Sep. 2005.

[6] T. Ebrahimi, C. Horne, "MPEG 4 Natural Video Coding - An
Overview," Image Communication Journal, vol. 15, no. 4-5, Jan. 2000,
pp. 365-385.

[7] H. Purnhagen, "An Overview of MPEG-4 Audio Version 2", AES 17th
International Conference on High-Quality Audio Coding, Firenze, Italy,
Sep. 1999.

[8] U. Niedermeier, J. Heuer, A. Hutter, W. Stechele, and A. Kaup, “An
MPEG-7 tool for compression and streaming of XML data,”
Proceedings of the 2002 IEEE Int’l. Conf. on Multimedia and Expo
(ICME), vol. 1, Lausanne, Switzerland, Aug. 2002, pp. 521–524.

[9] S.-T. Hsiang and J. W. Woods, “Embedded image coding using
zeroblocks of subband/wavelet coefficients and context modeling”,
MPEG-4 Workshop and Exhibition at ISCAS 2000, Geneva,
Switzerland, May 2000.

[10] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson: RFC 3550 – RTP:
A Transport Protocol for Real-Time Applications, July 2003.

29

